Deep Learning for Inverse Problems Where are we? How far can we go?

Jonas Adler^{1, 2} Ozan Öktem¹

¹Department of Mathematics KTH - Royal Institute of Technology, Stockholm, Sweden

²Research and Physics Elekta, Stockholm, Sweden

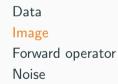
$$y = \mathcal{A}(x^*) + e.$$

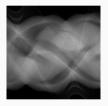
$y \in Y$	Data
$x^* \in X$	Image
$\mathcal{A}:X ightarrow Y$	Forward operator
$e\in Y$	Noise

 $\mathbf{y}=\mathcal{A}(x^*)+e.$

$y \in Y$	Data
$x^* \in X$	Image
$\mathcal{A}: X o Y$	Forward operator
$e\in Y$	Noise

$$y = \mathcal{A}(\mathbf{x}^*) + e.$$





$$y = \mathcal{A}(x^*) + e.$$

Data Image Forward operator Noise

$$y=\mathcal{A}(x^*)+\underline{e}.$$

Data Image Forward operator Noise

$$y=\mathcal{A}(x^*)+e.$$

 $\begin{array}{c} \stackrel{\mathcal{A}}{\rightarrow} \\ \stackrel{\leftarrow}{} \\ \stackrel{\scriptstyle *}{} \end{array}$

$$y=\mathcal{A}(x^*)+e.$$



The problem is ill-posed: non-uniqueness, instability

Data $y \in Y$ is a single observation generated by Y-valued random variable **y** where

$$\mathbf{y} = \mathcal{A}(\mathbf{x}) + \mathbf{e}.$$

Data $y \in Y$ is a single observation generated by Y-valued random variable **y** where

$$\mathbf{y} = \mathcal{A}(\mathbf{x}) + \mathbf{e}.$$

Full solution: A probability distribution on model parameter space X

$$\mathbb{P}(\mathbf{x} \mid \mathbf{y} = y)$$

This is a full characterization of the reconstruction, including uncertainty.

Data $y \in Y$ is a single observation generated by Y-valued random variable **y** where

$$\mathbf{y} = \mathcal{A}(\mathbf{x}) + \mathbf{e}.$$

Full solution: A probability distribution on model parameter space X

$$\mathbb{P}(\mathsf{x} \mid \mathsf{y} = y)$$

This is a full characterization of the reconstruction, including uncertainty.

Typical solution: Compute some estimator, e.g. the conditional mean

$$\mathbb{E}\big[\mathbf{x} \mid \mathbf{y} = y\big]$$

Jonas Adler jonasadler.com

Theorem (Conditional Mean)

Assume that Y is a measurable metric space, X a measurable Hilbert space, and \mathbf{y} and \mathbf{x} are Y- and X-valued random variables, respectively. Let

$$h^* = \operatorname*{arg\,min}_{h: Y o X} \mathbb{E} \Big[ig\| h(\mathbf{y}) - \mathbf{x} ig\|_X^2 \Big].$$

Then $h^*(y) := \mathbb{E}[\mathbf{x} \mid \mathbf{y} = y]$ almost everywhere.

• Suppose we aim to compute

$$\mathbb{E}\big[\mathbf{x} \mid \mathbf{y} = y\big]$$

• This can be done by solving

• Suppose we aim to compute

$$\mathbb{E}\big[\mathbf{x} \mid \mathbf{y} = y\big]$$

• This can be done by solving

$$\min_{h: |\mathbf{Y} \to X} \mathbb{E} \Big[\big\| h(\mathbf{y}) - \mathbf{x} \big\|_X^2 \Big]$$

• Suppose we aim to compute

$$\mathbb{E}\big[\mathbf{x} \mid \mathbf{y} = y\big]$$

• This can be done by solving

$$\min_{\mathbf{h}: \mathbf{Y} \to \mathbf{X}} \mathbb{E} \left[\left\| \mathbf{h}(\mathbf{y}) - \mathbf{x} \right\|_{X}^{2} \right]$$

The minimization is over all measurable functions

• Suppose we aim to compute

$$\mathbb{E}\big[\mathbf{x} \mid \mathbf{y} = y\big]$$

• This can be done by solving

$$\min_{\theta \in \boldsymbol{\Theta}} \mathbb{E} \Big[\big\| \mathcal{A}_{\theta}^{\dagger}(\mathbf{y}) - \mathbf{x} \big\|_{X}^{2} \Big].$$

The minimization is over all measurable functions Restrict minimization to some tractable subset

• Suppose we aim to compute

$$\mathbb{E}\big[\mathbf{x} \mid \mathbf{y} = y\big]$$

• This can be done by solving

$$\min_{\theta \in \Theta} \mathbb{E} \Big[\big\| \mathcal{A}_{\theta}^{\dagger}(\mathbf{y}) - \mathbf{x} \big\|_{X}^{2} \Big].$$

Expectation is taken over the unknown joint distribution

• Suppose we aim to compute

$$\mathbb{E}\big[\mathbf{x} \mid \mathbf{y} = y\big]$$

• This can be done by solving

$$\min_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \left\| \mathcal{A}_{\theta}^{\dagger}(y_i) - x_i \right\|_{X}^{2}$$

Expectation is taken over the unknown joint distribution Replace with empirical mean

• Suppose we aim to compute

$$\mathbb{E}\big[\mathbf{x} \mid \mathbf{y} = y\big]$$

• This can be done by solving

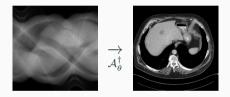
$$\min_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \left\| \mathcal{A}_{\theta}^{\dagger}(y_i) - x_i \right\|_{X}^{2}$$

This is a "computationally tractable" formulation, we just need to pick $\{\mathcal{A}_{\theta}^{\dagger}\}_{\theta\in\Theta}$.

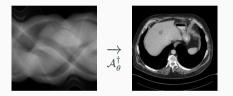
Architecture: Specification of the class of operators $\{\mathcal{A}_{\theta}^{\dagger}\}_{\theta\in\Theta}$.

Learned inversion methods

Architecture: Specification of the class of operators $\{\mathcal{A}_{\theta}^{\dagger}\}_{\theta\in\Theta}$. Main complication: $\mathcal{A}_{\theta}^{\dagger}: Y \to X$.

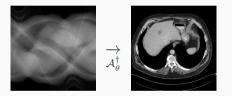


Architecture: Specification of the class of operators $\{\mathcal{A}_{\theta}^{\dagger}\}_{\theta\in\Theta}$. Main complication: $\mathcal{A}_{\theta}^{\dagger}: Y \to X$.



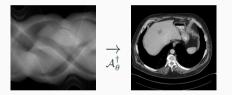
• Fully learned: Learn everything, disregard structure.

Architecture: Specification of the class of operators $\{\mathcal{A}_{\theta}^{\dagger}\}_{\theta\in\Theta}$. Main complication: $\mathcal{A}_{\theta}^{\dagger}: Y \to X$.



- Fully learned: Learn everything, disregard structure.
- Learned post-processing: First apply standard inverse, then denoise $\mathcal{A}_{\theta}^{\dagger} = P_{\theta} \circ \mathcal{A}^{\dagger}$

Architecture: Specification of the class of operators $\{\mathcal{A}_{\theta}^{\dagger}\}_{\theta\in\Theta}$. Main complication: $\mathcal{A}_{\theta}^{\dagger}: Y \to X$.



- Fully learned: Learn everything, disregard structure.
- Learned post-processing: First apply standard inverse, then denoise $\mathcal{A}_{\theta}^{\dagger} = P_{\theta} \circ \mathcal{A}^{\dagger}$
- Learned iterative schemes: Embed physics inside deep neural network

How well does this actually work?

Measure generalization gap:

$$\mathbb{E}\Big[\big\|\mathcal{A}_{\theta^*}^{\dagger}(\mathbf{y}) - \mathbf{x}\big\|_X^2\Big] - \mathbb{E}\Big[\big\|\mathbb{E}\big[\mathbf{x} \mid \mathbf{y}\big] - \mathbf{x}\big\|_X^2\Big].$$

Results for ray transform inversion in 2D:

• Inverse problem:

$$y = \mathcal{A}(x) + e$$

- Geometry: Parallel beam, sparse view (30 angles)
- Noise: 5% additive Gaussian
- Training data: 128×128 pixel ellipses

Results for ray transform inversion in 2D:

• Inverse problem:

$$y = \mathcal{A}(x) + e$$

- Geometry: Parallel beam, sparse view (30 angles)
- Noise: 5% additive Gaussian
- Training data: 128×128 pixel ellipses

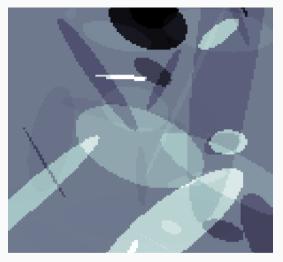
Compare to:

- FBP
- Total Variation
- Post-processing deep learning by U-Net
- Conditional expectation, $\mathbb{E}(\mathbf{x} \mid y)$, via MCMC

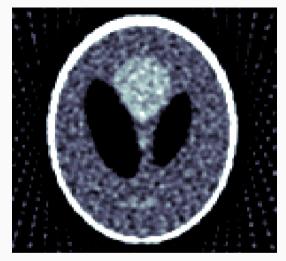
Jonas Adler jonasadler.com

Measure relative error:

$$\frac{\mathbb{E}\Big[\big\| \mathcal{A}_{\theta^*}^{\dagger}(\mathbf{y}) - \mathbf{x} \big\|_X^2 \Big]}{\mathbb{E}\Big[\big\| \mathbb{E} \big[\mathbf{x} \mid \mathbf{y} \big] - \mathbf{x} \big\|_X^2 \Big]}$$



Training data



FBP Normalized error: 372

TV Normalized error: 56.0

Learned Post-processing Normalized error: 42.2

Learned Iterative Normalized error: 5.2

Conditional Expectation Normalized error: 1

- We can find a reconstruction operator by solving a minimization problem
- Architecture: Specification of the class of operators $\{\mathcal{A}_{\theta}^{\dagger}\}_{\theta\in\Theta}$.
- Learning:

$$\min_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \left\| \mathcal{A}_{\theta}^{\dagger}(y_i) - x_i \right\|_{X}^{2}$$

• Empirically, current methods are remarkably close to optimal

- Apparently deep learning techniques are great for the conditional mean
- What about other estimators?
- Maximum a-posteriori is very hard

- Apparently deep learning techniques are great for the conditional mean
- What about other estimators?
- Maximum a-posteriori is very hard
- But, what about finding the whole posterior?

Generative Advesarial Networks

- Main idea: train two networks, generator G and discriminator D
- Generator tries to generate "true" samples, discriminator tries to say "good/bad"

Generative Advesarial Networks

- Main idea: train two networks, generator G and discriminator D
- Generator tries to generate "true" samples, discriminator tries to say "good/bad"

Goal: Sample from unknown posterior $\mathbb{P}(\mathbf{x} \mid \mathbf{y} = y)$.

Approach: Learn how to sample from posterior by solving

$$\min_{\theta} \mathbb{E}_{\mathbf{y} \sim \mathbb{P}_{data}} \Big[\mathcal{W} \big(\mathsf{G}_{\theta}(\mathbf{y}), \mathbb{P}(\mathbf{x} \mid \mathbf{y}) \big) \Big].$$

We minimize the *Wasserstein* distance between the random variables $G_{\theta}(\mathbf{y})$ and $\mathbb{P}(\mathbf{x} \mid \mathbf{y})!$

Goal: Sample from unknown posterior $\mathbb{P}(\mathbf{x} \mid \mathbf{y} = y)$.

Approach: Learn how to sample from posterior by solving

$$\min_{\theta} \mathbb{E}_{\mathbf{y} \sim \mathbb{P}_{data}} \Big[\mathcal{W} \big(\mathsf{G}_{\theta}(\mathbf{y}), \mathbb{P}(\mathbf{x} \mid \mathbf{y}) \big) \Big].$$

Re-write using the Kantorovich-Rubinstein dual characterization of \mathcal{W} .

Goal: Sample from unknown posterior $\mathbb{P}(\mathbf{x} \mid \mathbf{y} = y)$.

Approach: Learn how to sample from posterior by solving

$$\min_{\theta} \left\{ \max_{\mathsf{D} \in Lip(X)} \mathbb{E} \left[\mathsf{D}(\mathbf{x}, \mathbf{y}) - \mathsf{D}(\mathsf{G}_{\theta}(\mathbf{y})) \right] \right\}.$$

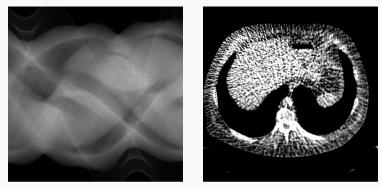
Re-write using the Kantorovich-Rubinstein dual characterization of \mathcal{W} .

Goal: Sample from unknown posterior $\mathbb{P}(\mathbf{x} \mid \mathbf{y} = y)$.

Approach: Learn how to sample from posterior by solving

$$\min_{\theta} \left\{ \max_{\mathsf{D} \in Lip(X)} \mathbb{E} \left[\mathsf{D}(\mathbf{x}, \mathbf{y}) - \mathsf{D}(\mathsf{G}_{\theta}(\mathbf{y})) \right] \right\}.$$

Formulation useful for deep learning



Data

FBP

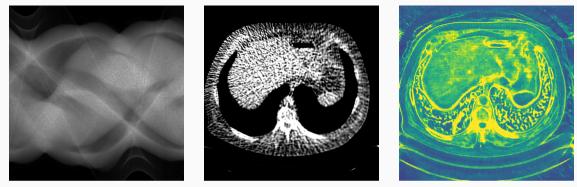
- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

Data

FBP

Posterior mean

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

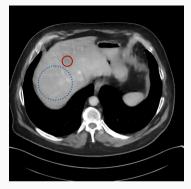


Data

FBP

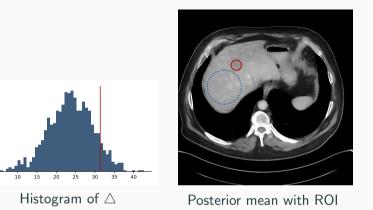
Standard deviation

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

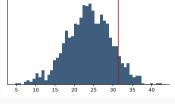


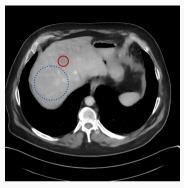
Posterior mean with ROI

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
- Liver lesion: $\bigtriangleup =$ difference in average contrast between ROI and liver.
- $\bullet\,$ Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%



- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
- Liver lesion: $\bigtriangleup =$ difference in average contrast between ROI and liver.
- $\bullet\,$ Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%





Normal dose image

Histogram of \triangle

Posterior mean with ROI

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
- Liver lesion: $\bigtriangleup =$ difference in average contrast between ROI and liver.
- $\bullet\,$ Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%

- Deep Learning methods for inverse problems building on empirical risk minimization are very powerful
- Fruitful ways forward involve questioning what we're trying to compute
- Posterior sampling is one such option

- Theory and methods for machine learning in image reconstruction.
- We've got the worlds first clinical photon counting spectral-CT data.
- Very nice position (great group, travel, salary)
- Pursued jointly with MedTechLabs and the Medical Imaging group at KTH.

Thank you for your attention!