Deep Posterior Sampling
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Bayesian Inversion



Bayesian Inversion

Inverse problem (Statistical viewpoint)

Data y € Y is a single observation generated by Y-valued random variable y where
y = A(x) +e.

Solution: A probability distribution on model parameter space X
P(x|y=y)

This is a full characterization of the reconstruction, including uncertainty. We don't

need to select estimators (e.g. task adapted becomes irrelevant).
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Bayesian Inversion: Theory

Theoretical results:

e The posterior (almost) always exists
e The mapping
y = Px|y=y)
is continuous.

e We can characterize convergence (Bernstein-von Mises)
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Bayesian Inversion: Classical methods

Bayes Law:
P(y | x)P(x)
P(x |y) = W
We know the data likelihood

P(y | x)

Only have to specify the prior
P(x)

Standard approach: Gibbs priors

P(x) = ™)
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Bayesian Inversion: Samples

S(x) = |IxI3 S(x) = [IVx|3 S(x) = [l Ax13
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Bayesian Inversion: Samples

S() = [Vxl S(x) = IIxllsy, S() = lixlgz,
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Bayesian Inversion: Examples of natural images

Jonas Adler  jonasadler.com



Bayesian Inversion: Conclusions

Framework for solving inverse problems

Strong regularizing properties

Uncertainty quantification

Basically parameter free

Classical methods are relatively slow and require closed form prior
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Deep posterior sampling

Generative models for uncertainty quantification in inverse problems



Bayesian Inversion: Hopes and dreams

What would we do if we had P(x |y = y)?

e Variance

E[(x—Elx |y =) |y =]

e Covariance

E[(Xl —Ex1 [y =y]) (x2 —E[x2 | y = y]) !y:y]

e Bayesian hypothesis testing

]P’(xeﬂlyzy)zE[lln(X)lyzy}

Jonas Adler  jonasadler.com 10 / 21



Direct Estimation

e The quantities we're looking for have the form

E[W’YZY}
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Direct Estimation

e The quantities we're looking for have the form

E[W’YZY}

Theorem (Conditional Mean)
Assume that Y is a measurable space, W a measurable Hilbert space, and'y and w are
Y- and W-valued random variables, respectively. Let

h* = inE|||A(y) — wl?, |.
zremin B [105) ~ il

Then h*(y) :==E[w |y = y].
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Direct Estimation

e The quantities we're looking for have the form

E[W’YZY}

Theorem (Conditional Mean)
Assume that Y is a measurable space, W a measurable Hilbert space, and'y and w are
Y- and W-valued random variables, respectively. Let

h* = argmin E|||h(y) — wl[3, |-
Then h*(y) :==E[w |y = y].

e Deep learning can compute basically any estimator
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Direct Estimation

e The quantities we're looking for have the form

E[W’YZY}

Theorem (Conditional Mean)
Assume that Y is a measurable space, W a measurable Hilbert space, and'y and w are
Y- and W-valued random variables, respectively. Let

: 2
h*:argmmE[hy —w }
h: YW H ) HW

Then h*(y) :==E[w |y = y].
e Deep learning can compute basically any estimator

e But we need to train a network for each
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Deep Posterior Sampling: The main insight

e The quantities we're looking for have the form

E[lezy}

e Mean (reconstruction): w = x
e Variance: w = (x — E[x |y = y])2
e Hypothesis: w = 1, >y,

e Law of large numbers: Assume w; |.I.D. from w | y =y, then a.s.

N

) 1

53 m-sfwly -
=

e All we need is |.I.D. samples!
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Generative models in Machine Learning

Input: Training data (x;) generated by (x).

Goal: Sample from unknown distribution P(x).
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Generative models in Machine Learning

Input: Training data (x;) generated by (x).
Goal: Sample from unknown distribution P(x).

Approaches:

e Variational Auto-Encoders
e Plug and Play Generative Networks
e Pixel Recurrent Models

e Generative Adversarial Networks
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Generative Advesarial Networks

e Main idea: train two networks, generator G and discriminator D
e Generator tries to generate "true” samples, discriminator tries to say "good/bad”
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Generative Advesarial Networks

e Main idea: train two networks, generator G and discriminator D
e Generator tries to generate "true” samples, discriminator tries to say "good/bad”
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

mgin W(Gg, P(x))
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

mgin W(Gg, P(x))

e Gy is a probability distribution on model parameters in X.

e )V is the Wasserstein 1-distance, measures how close Gg is to the distribution.
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

mgin W(Gg, P(x))

Unfeasible: Not possible to evaluate W (IP(x) unknown).
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

m@in{DeT%)E [D(x) - D(Gg)} }

Unfeasible: Not possible to evaluate W (IP(x) unknown).
—> Re-write using the Kantorovich-Rubinstein dual characterization of W.
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

m@in{DTi(xX)E [D(x) - D(Gg)} }

Unfeasible: Maximization over all Lipschitz operators
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

m@in{mng[D(,(x) - D“(Gg)} }

Unfeasible: Maximization over all Lipschitz operators
— Let discriminator be a NN.
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving
m@in{m(fxE[Dd)(x) — D¢(G0)} }

Unfeasible: How is Gy random?
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving
m@in{m;xExvz [D¢(x) - D¢(G,,(z))] }

Unfeasible: How is Gy random?
=—> Write as deterministic function of random input
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving
m@in{m;xlixvz [D¢(x) - D¢(G9(z))] }

Unfeasible: Expectation over samples
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

mln{max{ ZD¢ x;) EZD¢(G9(Z))]}.

Unfeasible: Expectation over samples
= Use empirical distribution
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Wasserstein GAN

Input: Unsupervised data (x;) generated by x.
Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

mln{max{ ZD¢ x;) EZD¢(G9(Z))]}.

Approximation to Wasserstein dlstance useful for deep learning
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Conditional Wasserstein GAN

Input: Supervised training data (x;, y;) generated by (x,y).
Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min Ey-p,, [W(Ge(Y),]P’(x | y))]
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Conditional Wasserstein GAN

Input: Supervised training data (x;, y;) generated by (x,y).
Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

Condition on data y, else same steps above (with some technical additions)
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Conditional Wasserstein GAN

Input: Supervised training data (x;, y;) generated by (x,y).
Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

N

_ 1

m(;n{m;gx N > {an(x,-, vi) — Ez[Dg(Go(z, vi), y,-)]} }
i=1

Condition on data y, else same steps above (with some technical additions)
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Conditional Wasserstein GAN

Input: Supervised training data (x;, y;) generated by (x,y).
Goal: Sample from unknown posterior P(x | y).
Approach: Learn how to sample from posterior by solving
1N
m@in{mq?x N ,z; |:D¢(X,‘,y,‘) —E, [D¢(G9(z,y,-), y;)]} }

Formulation useful for deep learning
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One of the images is the ground truth (phantom), can you figure out which one?




One of the images is the ground truth (phantom), can you figure out which one?

Conditional mean

Total variation



One of the images is the ground truth (phantom), can you figure out which one?

Conditional mean

Deep posterior sample Total variation



Data FBP

e Case: Patient with suspected metastasis to the liver.

e Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).



Data FBP Posterior mean

e Case: Patient with suspected metastasis to the liver.

e Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).



Data FBP Standard deviation

e Case: Patient with suspected metastasis to the liver.

e Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).



Posterior mean with ROI

Case: Patient with suspected metastasis to the liver.
Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
Liver lesion: A = difference in average contrast between ROI and liver.

Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%
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Histogram of A Posterior mean with ROI

Case: Patient with suspected metastasis to the liver.
Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
Liver lesion: A = difference in average contrast between ROI and liver.

Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%
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Normal dose image Histogram of A Posterior mean with ROI

e Case: Patient with suspected metastasis to the liver.
e Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
e Liver lesion: A = difference in average contrast between ROI and liver.

e Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%



Conclusion

e Bayesian Inversion is an extremely powerful framework
e Historical problems with computational feasibility and unknown prior

e Deep Learning methods allow us to compute any estimator quickly and with the
"true” prior
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Postdoc in Deep Learning based Reconstruction for Spectral-CT

Theory and methods for machine learning in image reconstruction.
e We've got the worlds first clinical photon counting spectral-CT data.

e Very nice position (great group, travel, salary)

Pursued jointly with MedTechLabs and the Medical Imaging group at KTH led by
Mats Danielsson.
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https://www.medtechlabs.se/en/medtechlabs/
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Thank you for your attention!
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