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Bayesian Inversion



Bayesian Inversion

Inverse problem (Statistical viewpoint)

Data y ∈ Y is a single observation generated by Y -valued random variable y where

y = A(x) + e.

Solution: A probability distribution on model parameter space X

P(x | y = y)

This is a full characterization of the reconstruction, including uncertainty. We don’t

need to select estimators (e.g. task adapted becomes irrelevant).
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Bayesian Inversion: Theory

Theoretical results:

• The posterior (almost) always exists

• The mapping

y → P(x | y = y)

is continuous.

• We can characterize convergence (Bernstein-von Mises)
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Bayesian Inversion: Classical methods

• Bayes Law:

P(x | y) =
P(y | x)P(x)

P(y)

• We know the data likelihood

P(y | x)

• Only have to specify the prior

P(x)

• Standard approach: Gibbs priors

P(x) = e−S(x)
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Bayesian Inversion: Samples

S(x) = ‖x‖2
2 S(x) = ‖∇x‖2

2 S(x) = ‖∆x‖2
2
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Bayesian Inversion: Samples

S(x) = ‖∇x‖1 S(x) = ‖x‖B1
1,1

S(x) = ‖x‖B2
1,1
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Bayesian Inversion: Examples of natural images
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Bayesian Inversion: Conclusions

• Framework for solving inverse problems

• Strong regularizing properties

• Uncertainty quantification

• Basically parameter free

• Classical methods are relatively slow and require closed form prior
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Deep posterior sampling

Generative models for uncertainty quantification in inverse problems



Bayesian Inversion: Hopes and dreams

What would we do if we had P(x | y = y)?

• Variance

E
[(
x− E[x | y = y ]

)2 | y = y
]

• Covariance

E
[(
x1 − E[x1 | y = y ]

)(
x2 − E[x2 | y = y ]

)
| y = y

]
• Bayesian hypothesis testing

P(x ∈ Ω | y = y) = E
[
1Ω(x) | y = y

]
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Direct Estimation

• The quantities we’re looking for have the form

E
[
w | y = y

]

Theorem (Conditional Mean)
Assume that Y is a measurable space, W a measurable Hilbert space, and y and w are

Y - and W -valued random variables, respectively. Let

h∗ = arg min
h : Y→W

E
[∥∥h(y)−w

∥∥2

W

]
.

Then h∗(y) := E
[
w | y = y

]
.

• Deep learning can compute basically any estimator

• But we need to train a network for each
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Deep Posterior Sampling: The main insight

• The quantities we’re looking for have the form

E
[
w | y = y

]

• Mean (reconstruction): w = x

• Variance: w =
(
x− E[x | y = y ]

)2

• Hypothesis: w = 1x1>x2

• Law of large numbers: Assume wi I.I.D. from w | y = y , then a.s.

lim
N→∞

1

N

N∑
i=1

wi → E
[
w | y = y

]
• All we need is I.I.D. samples!
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Generative models in Machine Learning

Input: Training data (xi ) generated by (x).

Goal: Sample from unknown distribution P(x).

Approaches:

• Variational Auto-Encoders

• Plug and Play Generative Networks

• Pixel Recurrent Models

• Generative Adversarial Networks
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Generative Advesarial Networks

• Main idea: train two networks, generator G and discriminator D

• Generator tries to generate ”true” samples, discriminator tries to say ”good/bad”
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ
W
(
Gθ,P(x)

)
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ
W
(
Gθ,P(x)

)
• Gθ is a probability distribution on model parameters in X .

• W is the Wasserstein 1-distance, measures how close Gθ is to the distribution.
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ
W
(
Gθ,P(x)

)
Unfeasible: Not possible to evaluate W (P(x) unknown).

=⇒ Re-write using the Kantorovich-Rubinstein dual characterization of W.
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.
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E x,z

[
Dφ(x)− Dφ(Gθ(z))
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ

{
max
φ

[
1

N

N∑
i=1

Dφ(xi )− Ez Dφ(Gθ(z))

]}
.

Approximation to Wasserstein distance useful for deep learning
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Conditional Wasserstein GAN

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min
θ

Ey∼Pdata

[
W
(
Gθ(y),P(x | y)

)]
.
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Conditional Wasserstein GAN

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min
θ

Ey∼Pdata

[
W
(
Gθ(y),P(x | y)

)]
.

Condition on data y, else same steps above (with some technical additions)
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Conditional Wasserstein GAN

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min
θ

{
max
φ

1

N

N∑
i=1

[
Dφ(xi , yi )− Ez

[
Dφ(Gθ(z, yi ), yi )

]]}
.

Formulation useful for deep learning
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One of the images is the ground truth (phantom), can you figure out which one?
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FBP 2 Conditional mean

4 Total variation



One of the images is the ground truth (phantom), can you figure out which one?

FBP Phantom Conditional mean

Deep posterior sample Total variation



Data FBP

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Data FBP Posterior mean
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• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Data FBP Standard deviation

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Normal dose image

5 10 15 20 25 30 35 40

Histogram of 4

Posterior mean with ROI

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Normal dose image
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Histogram of 4 Posterior mean with ROI

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Normal dose image
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Histogram of 4 Posterior mean with ROI

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Conclusion

• Bayesian Inversion is an extremely powerful framework

• Historical problems with computational feasibility and unknown prior

• Deep Learning methods allow us to compute any estimator quickly and with the

”true” prior
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Postdoc in Deep Learning based Reconstruction for Spectral-CT

• Theory and methods for machine learning in image reconstruction.

• We’ve got the worlds first clinical photon counting spectral-CT data.

• Very nice position (great group, travel, salary)

• Pursued jointly with MedTechLabs and the Medical Imaging group at KTH led by

Mats Danielsson.
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https://www.medtechlabs.se/en/medtechlabs/


Thank you for your attention!
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