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Lecture overview

• Bayesian inversion

• Learn a reconstruction method (estimator)

• Task adapted reconstruction

• Posterior Sampling
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Bayesian inversion



Inverse problems

Inverse problem (Functional analytic viewpoint)

Data y ∈ Y is a single observation generated by Y -valued random variable y where

y = A(x∗) + e.

Solution: A model parameter (element in X ) that approximates x∗.

• X = possible model parameters, Y = possible data.

• Data model

• Forward model: A : X → Y deterministic model for data.

• Observational noise: Random variable e with known distribution.

• Data likelihood: P(y | x) = probability of data y given model parameter x .

P(y | x) = P
(
A(x)− y

)
if e ∼ P.

• Randomness of x reflects our incomplete information.
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Inverse problems

Inverse problem (Statistical viewpoint)

Data y ∈ Y is a single observation generated by Y -valued random variable y where

y = A(x) + e.

Solution: A probability distribution on model parameter space X .

• X = possible model parameters, Y = possible data.

• Data model

• Forward model: A : X → Y deterministic model for data.

• Observational noise: Random variable e with known distribution.

• Data likelihood: P(y | x) = probability of data y given model parameter x .

P(y | x) = P
(
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Bayesian inversion

• Bayes theorem:

P(x | y) =
P(y | x)P(x)

P(y)
given data y .

• Bayesian inversion: Recover the posterior or explore it by computing estimators

(point estimators, credible region estimators, extreme value probabilities,

conditional covariance estimators, sampling estimators, . . . )

• Challenges:

• Data likelihood

⇐= physics model for generation of data

• Prior

⇐= can be handcrafted or learned

• Probability of data

⇐= major issue if this needs to be explicitly given

• Computational feasibility

remains a major issue for imaging applications
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Bayesian inversion

• Maximum likelihood: Maximise the data likelihood, i.e. solve

arg max
x

P(y | x) ⇐⇒ arg min
x

[
− logP(y | x)

]
for given y .

+ No need to specify prior or probability of data.

+ Computationally feasible for large-scale problems.

− Not suitable for ill-posed problems (overfitting).

• MAP: Maximise the posterior, i.e. solve

arg max
x

P(x | y) ⇐⇒ arg min
x

[
− logP(y | x)− logP(x)

]
for given y .

+ No need to specify probability of data.

+ Suitable for ill-posed problems.

− Need to specify prior.

− Computationally unfeasible for large-scale problems.
Jonas Adler jonasadler.com 6 / 43



Bayesian Inversion

• Conditional mean: Model parameter x̂ is the conditional mean, i.e.

x̂ := E[x | y = y ] =

∫
X
x P(x | y) dx for given y .

+ Suitable for ill-posed problems.

− Need to specify prior.

− Need to specify probability of data.

− Computationally unfeasible for small- to mid-scale problems.

• Bayes estimator: Minimise expected loss w.r.t. `X : X × X → R, i.e.

x̂ := R̂(y) where R̂ ∈ arg min
R : Y→X

E(x,y)∼µ

[
`X
(
R(y), x

)]
.

+ Suitable for ill-posed problems.

+ Suitable for supervised learning.

+ Equivalent to conditional mean when loss is squared 2-norm.

− Need to specify joint distribution.

− Computationally unfeasible for small- to mid-scale problems.
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Bayesian inversion

• Inverse problen: y = A(x) + e

• Data likelihood: e ∼ Normal(0, σ2)

• P(e) ∝ exp
(
− 1

σ2
‖e‖2

)
• P(y | x) = P

(
A(x)− y

)
=⇒ − logP(y | x) ∝ 1

σ2

∥∥A(x)− y
∥∥2

• Maximum likelihood:

arg min
x

1

σ2
∥∥A(x)− y

∥∥2
• Prior: Gibbs type of prior P(x) ∝ exp

(
−Sθ(x)

)
with Sθ : X → R convex.

• MAP:

arg min
x

[
Sθ(x) +

1

σ2
∥∥A(x)− y

∥∥2]
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Bayesian inversion

• Probability distribution of model parameter x.

• Contains all other information about model parameters.

• Should not be related to the measurement.

• Assigns high probability to “natural” model parameters and low probability to

unexpected model parameters.

• Design of prior distributions is the main difficulty in statistical inversion.

• Gibbs type of prior:

P(x) ∝ exp
(
−Sθ(x)

)
with Sθ : X → R convex.

Often θ is scalar and Sθ(x) = θS(x) for fixed S : X → R.
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Bayesian inversion

S(x) = ‖x‖22 S(x) = ‖∇x‖22 S(x) = ‖∆x‖22
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Bayesian inversion

S(x) = ‖∇x‖1 S(x) = ‖x‖B1
1,1

S(x) = ‖x‖B2
1,1
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Examples of natural images
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Bayesian inversion

+ Flexible and widely applicable framework for reconstruction.

+ Plug-and-play structure for adapting to different physics models of data

generation and statistical models of noise.

+ Plug-and-play structure for priors.

− Need to handcraft a prior.

− Many estimators, like conditional mean, also require probability of data.

− Computationally unfeasible.

Only MAP estimator currently used in imaging.
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Learn an estimator

Reference(s): (Adler & Öktem, 2017, 2018b)



Learning an estimator

Inverse problem:

y = A(x) + e.

Goal: Bayes estimator of x given y = y without explicitly specifying joint probability.

Approach: Use supervised learning to compute an estimator that minimises Bayes risk:

arg min
R : Y→X

E(x,y)∼µ

[
`X
(
R(y), x

)]
.

• Joint distribution µ of (x, y) unknown

=⇒ Empirical risk minimisation using training data (xi , yi ) generated by (x, y).

• Unfeasible to search over all reconstruction methods R : Y → X

=⇒ consider Rθ : Y → X parametrised by deep neural network.

• Joint distribution partially known: µ(x , y) = P(x)⊗ P(y | x)

=⇒ use neural network architecture Rθ : Y → X containing the data likelihood.
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Learned iterative reconstruction

• Use deep learning to compute Bayes estimator

• Encode data likelihood into neural network architecture, prior implicitly given by

supervised training data

• Can be adapted to a specific task
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Learned iterative reconstruction

CNN CNN CNN

A∗(A(x)− y) A∗(A(x)− y)
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Learned iterative reconstruction

CNN CNN CNN

CNN CNN

A∗ A∗ A∗

A A

Jonas Adler jonasadler.com 16 / 43



Learned iterative reconstruction

• How to parametrise the learned operators Γθd and Λθp?

• Use recent advancements in deep learning and experience from variational
regularisation:

• Translation invariance (convolutional networks)

• Pointwise non-linearities

• Perturbations of the identity (residual networks)

• Example settings for 2D tomography:

• 3 layer residual network with PReLU nonlinearities and 3× 3 convolutions

• Unroll with N = 10 ‘iterations’ =⇒ 60 layers.

• Deep learning network has ‘only’ has 264 960 parameters.
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Learned iterative reconstruction

Inverse problem: Recover attenuation coefficient from tomographic data (sinogram)

y = A(x) + e

• Forward operator: 2D ray transform

• Geometry: Fan beam, 1000 lines/angle, 1000 angles

• Noise: Poisson noise, 104 incident photons/detector element

• Image: 512× 512 pixel

• Training data: About 2 000 pairs (xi , yi ) from 9 patients
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Ground truth.



Ground truth. FBP.
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Ground truth.
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Learned iterative reconstruction

Quantitative comparison (SSIM = structural similarity index, 1 = perfect match)

Method PSNR (dB) SSIM Runtime (ms) Parameters

FBP 33.65 0.829 423 1

MAP with TV 37.48 0.946 64 371 1

FBP + U-Net 41.92 0.941 463 107

Learned primal-dual 44.11 0.969 620 2.4 · 105

Comments

• Improved reconstruction quality against state-of-the-art (2 years ago)

• No need to manually set ‘obscure’ parameters

• Execution time allows for clinical implementation

• Very modest requirements on amount of supervised training data
Jonas Adler jonasadler.com 20 / 43



Task adapted reconstruction

Joint work with Sebastian Lunz, Olivier Verdier, and Carola Schönlieb

Reference(s): (Adler et al., 2018a, 2018b)



Task adapted reconstruction

• Medical imaging is not done for fun, we want to solve a task!

• Images typically summarised, either by an expert or by using specific descriptors, in

an analysis step.

• Summaries used as input for decision making.

• Task adapted reconstruction: Methods that jointly perform reconstruction and

task (segmentation, classification, radiomics, . . . ).
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Task Adapted Reconstruction

• Bayes estimator: Rθ : Y → X where θ minimises Bayes risk:

L(θ) := E(x,y)∼µ

[
`X(Rθ(y), x)

]
given loss `X : X × X → R.

• Traditional losses: ‖x1 − x2‖22 or ‖x1 − x2‖1
• Fancy losses

• Adversarial: Uses a neural network to quantify if the result is ”good”.

• Perceptual: Quantifies image similarity by comparing features extracted using a

previously trained neural network.

• Adapt loss to the task.

Jonas Adler jonasadler.com 23 / 43



Task Adapted Reconstruction

• Bayes estimator: Rθ : Y → X where θ minimises Bayes risk:

L(θ) := E(x,y)∼µ

[
`X(Rθ(y), x)

]
given loss `X : X × X → R.

• Traditional losses: ‖x1 − x2‖22 or ‖x1 − x2‖1

• Fancy losses

• Adversarial: Uses a neural network to quantify if the result is ”good”.

• Perceptual: Quantifies image similarity by comparing features extracted using a

previously trained neural network.

• Adapt loss to the task.

Jonas Adler jonasadler.com 23 / 43



Task Adapted Reconstruction

• Bayes estimator: Rθ : Y → X where θ minimises Bayes risk:

L(θ) := E(x,y)∼µ

[
`X(Rθ(y), x)

]
given loss `X : X × X → R.

• Traditional losses: ‖x1 − x2‖22 or ‖x1 − x2‖1
• Fancy losses

• Adversarial: Uses a neural network to quantify if the result is ”good”.

• Perceptual: Quantifies image similarity by comparing features extracted using a

previously trained neural network.

• Adapt loss to the task.

Jonas Adler jonasadler.com 23 / 43



Task Adapted Reconstruction

• Bayes estimator: Rθ : Y → X where θ minimises Bayes risk:

L(θ) := E(x,y)∼µ

[
`X(Rθ(y), x)

]
given loss `X : X × X → R.

• Traditional losses: ‖x1 − x2‖22 or ‖x1 − x2‖1
• Fancy losses

• Adversarial: Uses a neural network to quantify if the result is ”good”.

• Perceptual: Quantifies image similarity by comparing features extracted using a

previously trained neural network.

• Adapt loss to the task.

Jonas Adler jonasadler.com 23 / 43



Task Adapted Reconstruction

• We can learn to go from data to reconstruction

• Combine with learned task operator

• End-to-end differentiable training!

−−−→
Rθ

−−−→
Tφ
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Task Adapted Reconstruction

• Sequential training: First train a reconstruction, then train the task

Lrec(θ) = Ex,y

[
`X
(
Rθ(y), x

)]
Ltask(φ) = Ey,d

[
`D
(
Tφ ◦ Rθ∗(y),d

)]
where θ∗ minimises θ 7→ Lrec(θ).

• End-to-end training: Straight from data to task

L(θ, φ) = Ey,d

[
`D
(
Tφ ◦ Rθ(y),d

)]
.

• Task adapted training: Anything in between

L(θ, φ) = Ex,y,d

[
C `X

(
Rθ(y), x

)
+ (1− C ) `D

(
Tφ ◦ Rθ(y),d

)]
.
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Task Adapted Reconstruction

• 7 CT brain scans

• Segmented semi-manually

• Simulated low-dose data

• Task: Segment white matter given CT sinogram

• Reconstruction operator: Rθ : Y → X (learned primal-dual)

• Task operator: Tφ : X → D (U-Net)
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True End-to-End Sequential

10−4

10−2

`X
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C
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Task Adapted Reconstruction

Segmentation only an example, can perform reconstruction jointly with any task given

by a trainable differentiable neural network.

• Semantic segmentation (Thoma, 2016; Guo et al., 2018).

• Caption generation (Karpathy & Fei-Fei, 2017; Li et al., 2018).

• Image translation (Wolterink et al., 2017).

• Object recognition (Sermanet et al., 2013; He et al., 2016; Farabet et al., 2013).

• Non-rigid image registration (Ghosal & Ray, 2017; Dalca et al., 2018).

. . .
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Deep posterior sampling

Generative models for uncertainty quantification in inverse problems

Reference(s): (Adler & Öktem, 2018a)



Conditional generative models

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min
θ

Ey∼Pdata

[
W
(
Gθ(y),P(x | y)

)]
.

• For each y ∈ Y , Gθ(y) is a probability distribution on model parameters in X .

• W is the Wasserstein 1-distance, measures how close Gθ(y) is to the posterior.

• Unfeasible: Not possible to evaluate expectation (probability of data P and

posterior P are both unknown).

=⇒ Re-write using the Kantorovich-Rubinstein dual characterization of W.

• Generator (and discriminator) trained against supervised training data

=⇒ trained generator can be used to sample from posterior by sampling z.
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Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min
θ

{
max
φ

E(x,y)∼µ

[
Dφ(x, y)− Ez

[
Dφ(Gθ(z, y), y)

]]}
.

• Unfeasible: Not possible to evaluate expectation (probability of data P and

posterior P are both unknown).

=⇒ Re-write using the Kantorovich-Rubinstein dual characterization of W.
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One of the images is the ground truth (phantom), can you figure out which one?

FBP Phantom Conditional mean

Deep posterior sample Total variation



Phantom FBP reconstruction



Phantom Posterior sample 1



Phantom Posterior sample 2



Phantom Posterior sample 3



Phantom Posterior sample 4



Phantom Posterior sample 5



Phantom Posterior sample 6



Phantom Posterior sample 7



Phantom Posterior sample 8



Phantom Posterior sample 9



Phantom Conditional mean (1000 samples)



Phantom Standard deviation



Phantom Correlation w.r.t. single point



Data FBP

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Data FBP Posterior mean
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Normal dose image
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• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Deep posterior sampling

• Images: 512× 512 pixel slices.

• Generating a sample from the posterior takes about 10 ms on a ‘gaming’ PC.

• Training the generator and discriminator used 2000 pairs (xi , yi ) from 9 patients.

• Generator and discriminator over-parametrised, about 108 parameters
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DLIP: Deep Learning in Inverse Problems
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Post doctoral fellowship

Postdoc in Deep Learning based Reconstruction for Spectral-CT

• Theory and methods for machine learning in image reconstruction in spectral-CT.

• Opportunity to work with photon counting spectral-CT in a clinical setting.

• Pursued jointly with MedTechLabs and the Medical Imaging group at KTH led by

Mats Danielsson.

• Contact: Ozan Öktem (e-mail: ozan@kth.se) for more information.
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Thank you for your attention!
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C. A. T., & Ǐsgum, I. (2017). Deep MR to CT synthesis using unpaired data. In

S. Tsaftaris, A. Gooya, A. Frangi, & J. Prince (Eds.), Simulation and synthesis in

medical imaging. SASHIMI 2017 (Vol. 10557, pp. 14–23).

Xie, J., Xu, L., & Chen, E. (2012). Image denoising and inpainting with deep neural

networks. In Proceedings of the 25th international conference on neural

information processing systems (nips 2012) (pp. 341–349).

Jonas Adler jonasadler.com 43 / 43


	References

	fd@rm@1: 
	fd@rm@0: 


